Conditionals	Revision theory	More conditionals	Discussion	Thanks	References

Truth and conditionals

Shawn Standefer University of Pittsburgh CAPE Seminar University of Kyoto

September 17, 2012

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Conditio	nals				

 \rightarrow

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
T-senter	nces				

$T(\ulcorner A \urcorner) \leftrightarrow A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Reasonin	ıg				

A ∴ *B*

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Reasonir	ng				

A ∴ *B*

$A, A \rightarrow B \vdash B$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Rejecting					

 $\dashv\,\lambda$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Weakeni	ng - I				

$\not\models T(\ulcorner\lambda\urcorner) \leftrightarrow \lambda$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Weaken	ing - I				

$$\not\models T(\ulcorner\lambda\urcorner) \leftrightarrow \lambda$$

 $T(\ulcorner A \urcorner) \models A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Weaken	ing - II				

$A, A \rightarrow B \not\models B$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Weakeni	ing				

 $\not\models T(\ulcorner\lambda\urcorner) \leftrightarrow \lambda$ $A, A \to B \not\models B$ \odot

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Fefermar	objection				

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Feferman	objection				

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Condition	als				

 \supset

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Conditio	nals				

 \supset

 $\supset \neq \rightarrow$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Field					

 $A \rightarrow B \models C \rightarrow A \rightarrow .C \rightarrow B$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Reall					

$$A, A \rightarrow B \models B$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Several	people				

$T(\ulcorner A \urcorner) \leftrightarrow A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Field aga	in, sort of				

$$DA =_{Df} A\& \sim (A \rightarrow \sim A)$$

$$\dashv A = \sim D^* A$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Roles					

Reasoning

Truth-theoretic features

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Revision	theory				

Ľ

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Circular	definitions				

$$Gx =_{Df} A(x, G)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Fxample					
Example					

$$Gx =_{Df} (x = a \& \sim Gx) \lor (x = b \& Gx)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Hypothe	eses				

$h \subseteq D$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Revising					

$$Gx =_{Df} A(x, G) \mapsto \delta$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Revising					

$$Gx =_{Df} A(x, G) \mapsto \delta$$

 $h, \delta(h), \delta(\delta(h)), \delta^3(h), \ldots, \delta^{\omega}(h), \ldots$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Example					

$$Gx =_{Df} (x = a \& \sim Gx) \lor (x = b \& Gx)$$

	0	1	2	
Ø	Ø	{a}	Ø	
$\{a\}$	{a}	Ø	{a}	
{ <i>b</i> }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	{ <i>b</i> }	
$\{a,b\}$	$\{a,b\}$	{ <i>b</i> }	$\{a,b\}$	

$$T(\ulcorner A_1 \urcorner) =_{Df} A_1$$
$$T(\ulcorner A_2 \urcorner) =_{Df} A_2$$
$$\vdots$$
$$T(\ulcorner A_n \urcorner) =_{Df} A_n$$
$$\vdots$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Classica	l logic and T	-sentences			

$$a = \ulcorner \sim Ta \urcorner$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Classica	l logic and T	-sentences			

$$a = \ulcorner \sim Ta \urcorner$$

$$\vdash_{\mathcal{K}} \sim (A \equiv \sim A)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Classical	l logic and T	-sentences			

$$a = \ulcorner \sim Ta \urcorner$$
$$\vdash_{K} \sim (A \equiv \sim A)$$
$$\nvDash_{RT} Ta \equiv \sim Ta$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
lt gets v	vorse				

$$\vdash_{RT} \sim (Ta \equiv \sim Ta)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Definitio	nal equivale	nce			

 $=_{Df} \neq \equiv$

Conditionals Revision theory More conditionals Discussion Thanks References
Conditionals for revision theory

$A \rightarrow B, A \leftarrow B$

Conditionals Revision theory More conditionals Discussion Thanks References
Conditionals for revision theory

$A \rightarrow B, A \leftarrow B$

$$A \leftrightarrow B := (A \rightarrow B)\& (A \leftarrow B)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
New hyp	ootheses				

$h \subseteq F \times V$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Semanti	CS				

$$\begin{array}{ll} M,v,h\models A\to B &\Leftrightarrow & M,v,h \not\models A \text{ or } \langle B,v \rangle \in_{M} h \\ M,v,h\models B\leftarrow A &\Leftrightarrow & \langle A,v \rangle \not\in_{M} h \text{ or } M,v,h\models B \end{array}$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Rules					

$$\begin{array}{c|c}
A^{k+1} \\
\hline
\vdots \\
B^{k} \\
A \to B^{k+1} & \to I
\end{array}$$

$$A^{k+1}$$

$$A \to B^{k+1}$$

$$B^k \longrightarrow \mathsf{E}$$

$$\begin{vmatrix} A^k \\ \vdots \\ B^{k+1} \\ B \leftarrow A^{k+1} \\ \leftarrow \mathsf{I} \end{vmatrix}$$

 $\begin{vmatrix} A^k \\ B \leftarrow A^{k+1} \\ B^{k+1} & \leftarrow \mathsf{E} \end{vmatrix}$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Features					

$\models_{RT^+} T(\ulcorner A \urcorner) \leftrightarrow A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Features					

$$A =_{Df} B = A \leftrightarrow B$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Features					

$$Gx =_{Df} A(x, C(Gx \leftrightarrow B))$$

•
$$(A \rightarrow C) \supset (A \& B \rightarrow C)$$

• $(A \rightarrow B) \& (A \rightarrow C) \supset .A \rightarrow (B \& C)$
• $A \lor B \rightarrow C \supset .A \rightarrow C$
• $(A \rightarrow C) \& (B \rightarrow C) \supset .A \lor B \rightarrow C$
• $(\sim A \rightarrow B) \& (\sim A \rightarrow \sim B) \supset .A$

•
$$\models ((C \leftarrow B) \leftarrow A) \equiv (C \leftarrow A\&B)$$

• $\not\models (A \rightarrow (B \rightarrow C)) \supset A\&B \rightarrow C$
• $\not\models (A\&B \rightarrow C) \supset (A \rightarrow (B \rightarrow C))$
• $A \rightarrow (A \rightarrow B) \not\models A \rightarrow B$
• $(B \leftarrow A) \leftarrow A \models B \leftarrow A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
l ogic -	Interaction				

$$(A \rightarrow B) \equiv (\sim A \leftarrow \sim B)$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Flaws					

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Flaws					

Conditionals Re	vision theory	More conditionals	Discussion	Thanks	References
Elaure 22					

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Flaws	.??				

$\not\models A \to A$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Flaws	.??				

$\not\models A \to A$

$A \rightarrow B, B \rightarrow C \not\models A \rightarrow C$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Flaws	.??				

$$\not\models A \to A$$

$A \rightarrow B, B \rightarrow C \not\models A \rightarrow C$

$$A \leftrightarrow B \not\models B \leftrightarrow A$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Seriously	y?				

 $\rightarrow \,,\, \leftarrow \ \neq \ \Rightarrow$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Roles re	visited				

	Reasoning	Truth
	$\rightarrow_{\mathcal{F}}$	→F
	→ _{BX}	\rightarrow_{BX}
The Revision Theory of Theory An Gan Junks Fran	D	\rightarrow, \leftarrow

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Too com	plicated				

$M, v, h \models A \rightarrow B \quad \Leftrightarrow \quad M, v, h \models A \text{ or } \langle B, v \rangle \in h$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Complet	ceness				

$$\models_{RT^+}^{\mathscr{D}} A \iff \vdash_{RT^+}^{\mathscr{D}} A$$

Conditionals Revision theory More conditionals Discussion Thanks Referenc

Naturally fits into the revision theory

$$Gx =_{Df} A(x, G)$$

Conditionals Revision theory More conditionals Discussion Thanks Reference

Naturally fits into the revision theory

$$=_{Df} \neq \equiv$$

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Conclusi	ons				

- Distinguish roles conditionals play in our theories
- These roles can be used to motivate the addition of conditionals to logics
- Adding conditionals to revision theory fixes one of its problems
- These conditionals fill out the formal and philosophical picture of the revision theory
- Our earlier distinction can be used to defend these conditionals against objections

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Thank y	ou				

- ... to you, the audience.
- ... to Shunsuke Yatabe for inviting me.
- ... to James Shaw and the Pittsburgh philosophy department dissertation seminar for discussion.

 \ldots to Anil Gupta for the support, discussion, and many ideas and insights.

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Field quo	te				

Field says the following of the strong Kleene material conditional.

But while [the material conditional] does a passable job as a conditional in the presence of excluded middle, it is totally inadequate as a conditional without excluded middle: with \supset as one's candidate for \rightarrow , one wouldn't even get such elementary laws of the conditional as $A \rightarrow A, A \rightarrow (A \lor B)$, or the inference from $A \rightarrow B$ to $(C \rightarrow A) \rightarrow (C \rightarrow B)$ The lack of a conditional (and also of a biconditional) cripples ordinary reasoning.Field (2008, 73)

Field says that his conditional "enables us to come much closer to carrying out ordinary reasoning" than the strong Kleene material conditional does.Field (2008, 276)

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Feferma	n quote				

"[N]othing like sustained ordinary reasoning can be carried on in [strong Kleene logic]." Feferman (1984, 95) The whole quotation is emphasized in the original.

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Beall qu	ote				

"The question is whether we have detachable Tr-biconditionals (i.e., ttruth-biconditionals). If we do, then such biconditionals are not our usual material biconditionals, as noted above. I think that we do enjoy detachable Tr-biconditionals...." (Beall, 2009, 26)

Conditionals	Revision theory	More conditionals	Discussion	Thanks	References
Bibliogra	aphy				

Beall, J. (2009). Spandrels of Truth. Oxford University Press.
Feferman, S. (1984). Toward useful type-free theories. I. Journal of Symbolic Logic, 49(1):75–111.
Field, H. (2008). Saving Truth from Paradox. Oxford.